skip to main content


Search for: All records

Creators/Authors contains: "Knights, Deon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Estimates of nitrate loading to the Arctic Ocean are limited by the lack of field observations within deltas partly due to logistical constraints. To overcome this limitation, we use a remote sensing framework to estimate retention of nitrate in Arctic deltas. We achieve this by coupling hydrological and biogeochemical process models at the network scale for five major Arctic deltas. Binary masks of delta channels were used to simulate flow direction and magnitude through networks. Models were parameterized using historical and seasonal observations. Simulated nitrate retention ranged from 2.9% to 15% of the incoming load. Retention rates were largest during winter but smallest during spring conditions when increased discharges export large nitrate masses to the coast. Under future climate scenarios, retention rates fall by ∼1%–10%. Arctic deltas have an important effect on the magnitude of nitrate entering Arctic seas and the inclusion of processing in deltas can improve flux estimates.

     
    more » « less
  2. Abstract

    River deltas display a wide range of morphologic patterns that influence how nutrients interact in channels and wetlands on their way to the coast. To quantify the role of delta morphology on nitrate fate, we simulated reactive nitrate transport over steady base flow conditions for six synthetic, morphologically unique river‐dominated deltas created in Delft3D by varying incoming grain size distributions. We parameterized nitrate removal kinetics using an observed relationship with elevation from Wax Lake Delta (Louisiana, USA). Total nitrate retention across the six synthetic deltas and Wax Lake Delta ranged from 1.3%‐13%, suggesting that these river‐dominated deltas have limited ability to remove nitrate from incoming river water. Nitrate removal is constrained by limited hydrologic connectivity with the areas of greatest nitrate demand, which are found at higher elevation. In these synthetic numerical experiments, the efficiency of nitrate removal is greatest for deltas with more topologic complexity and greater proportions of the delta plain at higher elevation, which are both common characteristics of coarser‐grained deltas. The positive relationship between grain size and nitrate removal may help guide land reclamation projects if project goals include minimizing nitrate export to the sea.

     
    more » « less
  3. Abstract

    Human activities have increased nitrate export from rivers, degrading coastal water quality. At deltaic river mouths, the flow of water through wetlands increases nitrate removal, and the spatial organization of removal rates influences coastal water quality. To understand the spatial distribution of nitrate removal in a river‐dominated delta, we deployed 23 benthic chambers across ecogeomorphic zones with varying elevation, vegetation, and sediment properties in Wax Lake Delta (Louisiana, USA) in June 2018. Regression analyses indicate that normalized difference vegetation index is a useful predictor of summertime nitrate removal. Mass transfer velocity were approximately three times greater on a vegetated submerged levee (13 mm hr−1), where normalized difference vegetation index was greatest, compared to other locations (4.6 mm hr−1). Two methods were developed to upscale nitrate removal across the delta. The flooded‐delta method integrates spatially explicit potential removal rates across submerged portions of the delta and suggests that intermediate elevations on the delta—including submerged levees—are responsible for 70% of potential nitrate removal despite covering only 33% of the flooded area. The channel network method treats the delta as a network of river channels and suggests that although secondary channels are more efficient than primary channels at removing received nitrate, primary channels collectively contribute more to overall removal because they convey more of the total nitrate load. The two upscaling methods predict similar rates of nitrate removal, equivalent to less than 4% of nitrate entering the delta. To protect coastal waters against high nitrate loads, management policies should aim to reduce upstream nutrient loads.

     
    more » « less